TABLE 4 Numbers and metabolic diversity of microorganisms in vent environments | Samples | Number of microorganisms ^a | Metabolic and/or phylogenetic groups | |---|--|--| | Diffuse-flow
fluids (2°C–80°C) | 10 ⁵ ->10 ⁹ ml ⁻¹ ; high numbers from Galapagos particles | Extremely high diversity
of bacteria and archaea
and include aerobes and
anaerobes (see Table 1) | | Smoker fluids
(250°C–400°C) | Not detected to 10 ⁷ ml ⁻¹ ; high numbers correlate with evidence of phase separation ^b | Hyperthermophilic
methanogens and
heterotrophic archaea
isolated; evidence for
other hyperthermophilic
archaea and bacteria
from molecular data ^c | | Hydrothermal vent
plume water (2°C in
horizontal plume) | $\sim 10^5 - > 10^6 \text{ ml}^{-1}$ | H ₂ -, CH ₄ -, and Mn ²⁺ -oxidizing
bacteria detected by activity
measurements; <i>Halomonas</i>
spp. isolated ^d | | Deep SW surrounding vents (2°C) | $10^3 - < 10^5 \mathrm{ml}^{-1}$ | Limited diversity of bacteria
and archaea detected and
enumerated using molecular
methods | | Sulfide structures | >10 ⁸ per gram of sulfide on
outer layers; 10 ⁵ per gram
in interior | Outer layers have a mixture
of archaea and bacteria and
include metal oxidizers and
methanogens; inner layers
contain only archaea of
unknown physiologies ^e | | Subsurface crust | Numbers are unknown | Different thermal groups of
bacteria and archae detected
from new eruptions; unique
archaea isolated from
subsurface fluids ^f | | Microbial mats | >10 ⁸ bacteria per gram | High numbers of sulfur-
oxidizing bacteria including $Beggiatoa$ spp. and uncultured ε -proteobacteria ^g | | Sediments | Surface of Guaymas sediments
similar to microbial mats;
numbers range from in
sedimented ridges ^h | Same as for microbial mats in
surface layer with sulfate-
reducing bacteria and archaea
dominating the deeper layers | | | | (Continued) | TABLE 4 (Continued) | Samples | Number of microorganisms ^a | Metabolic and/or
phylogenetic groups | |------------------------------|---|---| | Animal
endosymbionts | $\sim \! 10^{10} \mathrm{per} \mathrm{gram} \mathrm{tissue}$ | Sulfide-oxidizing bacteria most
common in hydrothermal vent
animals whereas methane-oxidizing
bacteria found at some cold seeps | | Outer surfaces
of animals | Probably similar to microbial mats | Methane oxidizers found on surface
shells of some limpets and worm
tubes ⁱ ; filamentous metal-oxidizing
bacteria found on rear surfaces
of Alvinella worms ^j | a Numbers usually determined by epifluorescence microscopy or quantitative lipid analyses. ^bBaross & Deming 1995. [°]Takai et al. 2000. ^dCowen et al. 1986, 1998; Lilley et al. 1995; Kaye & Baross 2000. eHarmsen et al. 1997a, Schrenk et al. 1999a. ^fDelaney et al. 1998; Summit & Baross 1998, 2001. ^gJannasch 1995, Longnecker & Reysenbach 2001, Nelson et al. 1989, Moyer et al. 1995. ^hParkes et al. 1994, Summit et al. 2000. ⁱDe Angelis et al. 1991. JCary & Stein 1998.