TABLE 4
 Numbers and metabolic diversity of microorganisms in vent environments

Samples	Number of microorganisms ^a	Metabolic and/or phylogenetic groups
Diffuse-flow fluids (2°C–80°C)	10 ⁵ ->10 ⁹ ml ⁻¹ ; high numbers from Galapagos particles	Extremely high diversity of bacteria and archaea and include aerobes and anaerobes (see Table 1)
Smoker fluids (250°C–400°C)	Not detected to 10 ⁷ ml ⁻¹ ; high numbers correlate with evidence of phase separation ^b	Hyperthermophilic methanogens and heterotrophic archaea isolated; evidence for other hyperthermophilic archaea and bacteria from molecular data ^c
Hydrothermal vent plume water (2°C in horizontal plume)	$\sim 10^5 - > 10^6 \text{ ml}^{-1}$	H ₂ -, CH ₄ -, and Mn ²⁺ -oxidizing bacteria detected by activity measurements; <i>Halomonas</i> spp. isolated ^d
Deep SW surrounding vents (2°C)	$10^3 - < 10^5 \mathrm{ml}^{-1}$	Limited diversity of bacteria and archaea detected and enumerated using molecular methods
Sulfide structures	>10 ⁸ per gram of sulfide on outer layers; 10 ⁵ per gram in interior	Outer layers have a mixture of archaea and bacteria and include metal oxidizers and methanogens; inner layers contain only archaea of unknown physiologies ^e
Subsurface crust	Numbers are unknown	Different thermal groups of bacteria and archae detected from new eruptions; unique archaea isolated from subsurface fluids ^f
Microbial mats	>10 ⁸ bacteria per gram	High numbers of sulfur- oxidizing bacteria including $Beggiatoa$ spp. and uncultured ε -proteobacteria ^g
Sediments	Surface of Guaymas sediments similar to microbial mats; numbers range from in sedimented ridges ^h	Same as for microbial mats in surface layer with sulfate- reducing bacteria and archaea dominating the deeper layers
		(Continued)

TABLE 4 (Continued)

Samples	Number of microorganisms ^a	Metabolic and/or phylogenetic groups
Animal endosymbionts	$\sim \! 10^{10} \mathrm{per} \mathrm{gram} \mathrm{tissue}$	Sulfide-oxidizing bacteria most common in hydrothermal vent animals whereas methane-oxidizing bacteria found at some cold seeps
Outer surfaces of animals	Probably similar to microbial mats	Methane oxidizers found on surface shells of some limpets and worm tubes ⁱ ; filamentous metal-oxidizing bacteria found on rear surfaces of Alvinella worms ^j

a Numbers usually determined by epifluorescence microscopy or quantitative lipid analyses.

^bBaross & Deming 1995.

[°]Takai et al. 2000.

^dCowen et al. 1986, 1998; Lilley et al. 1995; Kaye & Baross 2000.

eHarmsen et al. 1997a, Schrenk et al. 1999a.

^fDelaney et al. 1998; Summit & Baross 1998, 2001.

^gJannasch 1995, Longnecker & Reysenbach 2001, Nelson et al. 1989, Moyer et al. 1995.

^hParkes et al. 1994, Summit et al. 2000.

ⁱDe Angelis et al. 1991.

JCary & Stein 1998.