TABLE 4 Numbers and metabolic diversity of microorganisms in vent environments

Samples	Number of microorganisms ${ }^{\text {a }}$	Metabolic and/or phylogenetic groups
Diffuse-flow fluids $\left(2^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}\right)$	$10^{5}->10^{9} \mathrm{ml}^{-1}$; high numbers from Galapagos particles	Extremely high diversity of bacteria and archaea and include aerobes and anaerobes (see Table 1)
Smoker fluids $\left(250^{\circ} \mathrm{C}-400^{\circ} \mathrm{C}\right)$	Not detected to $10^{7} \mathrm{ml}^{-1}$; high numbers correlate with evidence of phase separation ${ }^{\text {b }}$	Hyperthermophilic methanogens and heterotrophic archaea isolated; evidence for other hyperthermophilic archaea and bacteria from molecular data ${ }^{\mathrm{c}}$
Hydrothermal vent plume water $\left(2^{\circ} \mathrm{C}\right.$ in horizontal plume)	$\sim 10^{5}->10^{6} \mathrm{ml}^{-1}$	$\mathrm{H}_{2^{-}}, \mathrm{CH}_{4^{-}}$, and Mn^{2+}-oxidizing bacteria detected by activity measurements; Halomonas spp. isolated ${ }^{\text {d }}$
Deep SW surrounding vents $\left(2^{\circ} \mathrm{C}\right)$	$10^{3}-<10^{5} \mathrm{ml}^{-1}$	Limited diversity of bacteria and archaea detected and enumerated using molecular methods
Sulfide structures	$>10^{8}$ per gram of sulfide on outer layers; 10^{5} per gram in interior	Outer layers have a mixture of archaea and bacteria and include metal oxidizers and methanogens; inner layers contain only archaea of unknown physiologies ${ }^{\text {e }}$
Subsurface crust	Numbers are unknown	Different thermal groups of bacteria and archae detected from new eruptions; unique archaea isolated from subsurface fluids ${ }^{\mathrm{f}}$
Microbial mats	$>10^{8}$ bacteria per gram	High numbers of sulfuroxidizing bacteria including Beggiatoa spp. and uncultured ε-proteobacteriag ${ }^{g}$
Sediments	Surface of Guaymas sediments similar to microbial mats; numbers range from in sedimented ridges ${ }^{\text {h }}$	Same as for microbial mats in surface layer with sulfatereducing bacteria and archaea dominating the deeper layers

TABLE 4 (Continued)

Samples	Number of microorganisms ${ }^{\text {a }}$	Metabolic and/or phylogenetic groups
Animal endosymbionts	$\sim 10^{10}$ per gram tissue	Sulfide-oxidizing bacteria most common in hydrothermal vent animals whereas methane-oxidizing bacteria found at some cold seeps
Outer surfaces of animals	Probably similar to microbial mats	Methane oxidizers found on surface shells of some limpets and worm tubes
		filamentous metal-oxidizing bacteria found on rear surfaces of Alvinella worms

${ }^{\text {a }}$ Numbers usually determined by epifluorescence microscopy or quantitative lipid analyses.
${ }^{\text {b}}$ Baross \& Deming 1995.
${ }^{\circ}$ Takai et al. 2000.
${ }^{\text {d }}$ Cowen et al. 1986, 1998; Lilley et al. 1995; Kaye \& Baross 2000.
${ }^{\text {e }}$ Harmsen et al. 1997a, Schrenk et al. 1999a.
fdelaney et al. 1998; Summit \& Baross 1998, 2001.
\&Jannasch 1995, Longnecker \& Reysenbach 2001, Nelson et al. 1989, Moyer et al. 1995.
${ }^{\text {h }}$ Parkes et al. 1994, Summit et al. 2000.
${ }^{i}$ De Angelis et al. 1991.
${ }^{\mathrm{j}}$ Cary \& Stein 1998.

