Table 1. Key bioenergetic parameters of fluids associated with serpentinization. | Constituent or property | Experimental/theoretical ^a | LCHFb (30°N) | Rainbow ^c (36°14′N) | Sea water ^d | |---|---------------------------------------|------------------------|--------------------------------|------------------------| | Temperature (°C) | 25–300 | 40–93 | 365 | 7 | | pН | 8–12 | 9–11 | 2.8 | 8 | | H ₂ (mmol kg ⁻¹) | 1-100 | 0.25-0.43 ^e | 16 | 0 | | CH₄ (mmol kg ⁻¹) | 0.01-1 | 0.13-0.28 ^e | 2.5 | 0 | | $C_2H_4 + C_3H_6 \text{ (nmol kg}^{-1}\text{)}$ | <1000 | >100 ^e | 1145 | 0 | | H₂S (mmol kg ⁻¹) | 0.1-1 | 0.064 | 1.2 | 0 | | SO₄ (mmol kg ⁻¹) | 0 | 5.9-12.9 ^e | 0 | 28.6 | | NO ₃ (μmol kg ⁻¹) | ND^f | ND_g | ND | 20 | | CO ₂ (mmol kg ⁻¹) | 0 | ND | 16 | 2.30 | | Total Fe (μmol kg ⁻¹) | 1.0 | ND | 24 050 | < 0.001 | | $CH_4/(C_2H_4 + C_3H_6)$ | 1000–10 000 | 100 | 2183 | _ | - a. Palandri and Reed (2004): simulations run at 25°C and 300°C in fresh water and seawater solutions respectively. Horita and Berndt (1999): experiments conducted at 200°C and 300°C in fresh water solutions. - b. Proskurowski et al. (2003; includes C₄C₈); Kelley et al. (2001). - **c.** Charlou *et al.* (2002). - d. D. Butterfield, personal communication (measured for 30°N in the Atlantic Ocean at 700 m depth). - e. H₂, CH₄ and H₂S values are minimum values because of artifacts associated with sample collection and storage. SO₄ values are maxima as a result of the partial oxidation of sulphide during storage and the lack of correction for zero Mg end-member hydrothermal fluids. - ND, not determined. - g. Although not measured, NO₃ values of end-member hydrothermal fluids at the LCHF are believed to be well below 20 μmol kg⁻¹ because of the highly reducing nature of the system and by comparison with magmatically influenced sites.